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 Effects of short-range correlations on proton densities using the Wood-Saxon potential 
 

T. Ma and S. Shlomo 
 

Jastrow approach has long been used to describe short-range correlations within the nucleus. But 
unless the number of nucleons in the nucleus is very small, it is not possible to calculate the proton density 
and form factor exactly by employing the Jastrow wave function. To deal with this case, Iwamoto and 
Yamada have developed the Cluster Expansion method [1] and M. GAUDIN et al. have applied that method 
to nuclei with simple correlation factor 𝑒𝑒−𝛽𝛽2𝑟𝑟2 [2]. Here we first discuss a new method [3] to calculate the 
effect on the proton density caused by short-range correlation that can be applied to heavier nuclei. In this 
report we will provide the result produced by this method for the proton density, especially in the high Z, 
N≠Z method.  

Under the independent particle approximation, the shell model many body wave function is given 
by the Slater determinant of the occupied single particle wave functions 𝜓𝜓𝑖𝑖�𝒓𝒓𝒋𝒋�: 

 

𝜓𝜓𝑆𝑆𝑆𝑆 =
1
√𝐴𝐴!

det (𝜓𝜓1(𝒓𝒓𝟏𝟏) …𝜓𝜓𝐴𝐴(𝒓𝒓𝑨𝑨)) 

 
To account for the short range correlation, we use Jastrow wave function: 
 

𝜓𝜓𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 =
𝑁𝑁
√𝐴𝐴!

� 𝑓𝑓𝑖𝑖𝑖𝑖(�𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋�)
𝐴𝐴

1≤𝑖𝑖<𝑖𝑖

det (𝜓𝜓1(𝒓𝒓𝟏𝟏) …𝜓𝜓𝐴𝐴(𝒓𝒓𝑨𝑨)) 

 
In which N is normalize factor. In long range limit 𝑓𝑓𝑖𝑖𝑖𝑖 goes to 1.    
 Therefore, we can assume that for 𝑔𝑔𝑖𝑖𝑖𝑖=𝑓𝑓𝑖𝑖𝑖𝑖-1, which is not negligible only when 𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋 is small, 
we can use, 
 

                      ∏ 𝑓𝑓𝑖𝑖𝑖𝑖(�𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋�)𝐴𝐴
1≤𝑖𝑖<𝑖𝑖 =∏ (1 + 𝑔𝑔𝑖𝑖𝑖𝑖��𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋��)𝐴𝐴

1≤𝑖𝑖<𝑖𝑖  
 
We also note that the chance that more than 3 nucleons are all close to each other is small, and 

therefore we can neglect all the diagrams [3] that involves more than 3 nucleons. Thus, we can get for the 
correlated density ρ(r) 

 
ρ(r)=ρ0(r)+∫ g(𝐫𝐫 − 𝐫𝐫𝟏𝟏) (ρ0sum(𝐫𝐫𝟏𝟏)ρ0(𝐫𝐫) − ρ0(𝐫𝐫, 𝐫𝐫𝟏𝟏)ρ0(𝐫𝐫𝟏𝟏, 𝐫𝐫))d𝐫𝐫𝟏𝟏- 
∫ g(𝐫𝐫𝟏𝟏 − 𝐫𝐫𝐫𝐫)�ρ0(𝐫𝐫, 𝐫𝐫𝟏𝟏)ρ0(𝐫𝐫𝟏𝟏, 𝐫𝐫)ρ0sum(𝐫𝐫𝐫𝐫) − ρ0(𝐫𝐫, 𝐫𝐫𝟏𝟏)ρ0(𝐫𝐫𝟏𝟏, 𝐫𝐫𝐫𝐫)ρ0(𝐫𝐫𝐫𝐫, 𝐫𝐫′)�   d𝐫𝐫𝟏𝟏d𝐫𝐫𝐫𝐫,  (1) 

    
where ρ0(r) and ρ0(𝐫𝐫, 𝐫𝐫𝟏𝟏) are the shell model one-body density matrix for proton or neutron with a certain 
spin state, and ρ0sum(𝐫𝐫𝟏𝟏) is the sum of the density of both kinds of nucleons (proton and neutron of all 
spin states) within the shell model. 
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Under the method that we developed, if we set g�𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋�=−𝑒𝑒−𝛽𝛽
2�𝒓𝒓𝒊𝒊−𝒓𝒓𝒋𝒋�

2
 we can calculate the 

nucleon density distribution for all the spherical symmetric nucleus, especially heavier one. How well it 
works? Here is an example: 

 

We use the Wood-Saxon potential: V=( 50

1+𝑒𝑒
𝑟𝑟−1.25𝐴𝐴

1
3

(0.6−1.2𝐴𝐴)𝑓𝑓𝑓𝑓

(1 + 0.72 𝑁𝑁−𝑍𝑍
𝐴𝐴

)+𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) MeV, in which 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=1.44Z/r MeV for r>𝑟𝑟𝑐𝑐=1.25𝐴𝐴
1
3 and 1.44Z(3𝑟𝑟0

2−𝑟𝑟2

2𝑟𝑟02
) MeV for r<𝑟𝑟𝑐𝑐, for neutron the potential is 

V=( 50

1+𝑒𝑒
𝑟𝑟−1.25𝐴𝐴

1
3

(0.6−1.2𝐴𝐴)𝑓𝑓𝑓𝑓

(1 + 0.72 𝑍𝑍−𝑁𝑁
𝐴𝐴

) MeV. For the correlation factor we use g�𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋�=−𝑒𝑒−1.42�𝒓𝒓𝒊𝒊−𝒓𝒓𝒋𝒋�
2
. The 

calculated proton root-mean-square (RMS) radii are given in Table I and the shell model and the correlated 
proton density distributions are shown in Figs 1 and 2. 

 
Table I. Calculated proton root-mean-square (RMS) radii. 

nucleus 4He 16O 28Si 32S 40Ca 60Ni 90Zr 140Ce 208Pb 
shell model 
radius 

1.616 2.530 3.059 3.190 3.330 3.756 4.150 4.787 5.448 

radius with 
correlation(fm) 

1.737 2.677 3.182 3.330 3.484 3.857 4.283 4.905 5.542 

radius change 7.47% 5.81% 4.02% 4.37% 4.62% 2.66% 3.19% 2.46% 1.73% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIG. 1. The shell model (red line) and the correlated (blue line) proton density distributions of 40Ca. 
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FIG. 2. The shell model (red line) and the correlated (blue line) proton density distributions of 208Pb. 
 

 
FIG. 3. Proton density for 40Ca with harmonic potential [2] and short range correlation. 
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In order to confirm the correctness of my calculaion, I used my method for the case provided in [2]: Ca40 
with harmonic shell model α=0.55fm-1 and short-range correlation factor β=1.4fm-1, and the result 
withCorrelation is shown in Fig. 3. 
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